fikes.umsida.ac.id- Prediksi hipertensi kini semakin akurat berkat penerapan teknologi data mining yang memanfaatkan kecanggihan machine learning.
Baca Juga: Meningkatkan Akurasi Rekam Medis dalam Mengidentifikasi Penyebab Kematian
Riset inovatif dari dosen Program Studi Manajemen Informasi Kesehatan, Fakultas Ilmu Kesehatan Universitas Muhammadiyah Sidoarjo (Fikes Umsida) menunjukkan bahwa pendekatan prediktif ini mampu membantu Puskesmas memetakan risiko hipertensi lebih dini dan tepat sasaran. Hal ini menjadi langkah penting untuk meningkatkan mutu pelayanan kesehatan, terutama di fasilitas kesehatan primer seperti UPT Puskesmas Ngoro, Mojokerto.
Hipertensi: Ancaman Senyap dan Tantangan Layanan Kesehatan

Hipertensi merupakan salah satu penyakit tidak menular (PTM) yang masih menjadi tantangan besar di Indonesia. Tak hanya menyerang diam-diam, penyakit ini juga menjadi penyumbang angka kematian tertinggi. Berdasarkan data yang dihimpun dari UPT Puskesmas Ngoro, jumlah penderita hipertensi sangat signifikan, terutama pada kelompok usia lanjut.
Dalam konteks ini, pelayanan kesehatan yang baik bukan hanya fokus pada pengobatan, tetapi juga pencegahan melalui deteksi dini. Riset yang dilakukan oleh Alliza Sapto Novari dan Umi Khoirun Nisak dari Fakultas Ilmu Kesehatan Universitas Muhammadiyah Sidoarjo (Fikes Umsida) bertujuan untuk membantu Puskesmas memprediksi siapa saja yang berisiko mengalami hipertensi. Prediksi ini menggunakan logistic regression dan naive bayes—dua metode dalam data mining yang sudah terbukti ampuh dalam analisis data kesehatan.
Dari total 13.365 kunjungan pasien, ditemukan 1.890 pasien yang mengalami tekanan darah tinggi. Berdasarkan Klasifikasi JNC VII, para pasien tersebut diklasifikasikan dalam kategori pra-hipertensi, hipertensi tingkat 1, dan hipertensi tingkat 2. Sebagian besar kasus hipertensi terjadi pada kelompok usia di atas 60 tahun dan lebih banyak dialami oleh perempuan.
Data Mining: Teknologi Prediktif yang Membantu Tenaga Kesehatan
Data mining adalah teknik pengolahan data besar (big data) yang dapat menggali pola-pola tersembunyi di balik angka. Dalam riset ini, data mining dipakai untuk menganalisis beberapa variabel seperti usia, jenis kelamin, kebiasaan merokok, konsumsi alkohol, dan Indeks Massa Tubuh (IMT).
Dengan bantuan perangkat lunak SPSS dan Orange, para peneliti memproses dan memvisualisasikan data pasien secara menyeluruh. Hasilnya menunjukkan bahwa faktor usia di atas 60 tahun dan jenis kelamin perempuan menjadi dua indikator utama yang paling berpengaruh terhadap kejadian hipertensi. Yang menarik, kebiasaan merokok dan konsumsi alkohol justru tidak memberikan dampak signifikan pada populasi pasien Puskesmas Ngoro. Mayoritas penderita hipertensi tercatat tidak merokok dan tidak mengonsumsi alkohol.
Melalui uji logistic regression, model prediktif yang dihasilkan memiliki tingkat akurasi cukup tinggi, dengan nilai AUC sebesar 0,867. Ini berarti bahwa model mampu mengklasifikasikan pasien dengan benar sekitar 87%. Ini menjadi terobosan penting dalam upaya prediksi risiko secara cepat dan efisien.
Implikasi Strategis: Menuju Layanan Kesehatan yang Lebih Tepat dan Efektif
Implementasi model prediktif ini membawa dampak besar bagi sistem layanan kesehatan, terutama dalam aspek efisiensi sumber daya. Dengan mengetahui siapa saja yang berisiko tinggi, Puskesmas bisa lebih siap dalam menyiapkan stok obat, menyusun jadwal kontrol rutin, serta mengedukasi kelompok rentan melalui promosi kesehatan yang terarah.
Strategi ini sejalan dengan upaya pemerintah dalam memperkuat layanan primer dan menekan angka komplikasi hipertensi. Model prediksi juga dapat menjadi dasar dalam menyusun program intervensi berbasis komunitas yang lebih efektif, misalnya program pengawasan tekanan darah rutin untuk lansia atau pelatihan gaya hidup sehat di posyandu.
Tak hanya itu, penggunaan data mining juga memperkuat peran tenaga Manajemen Informasi Kesehatan (MIK) dalam mengintegrasikan teknologi dan analisis data ke dalam praktik pelayanan kesehatan. Hal ini tentu menjadi nilai tambah tersendiri bagi Fikes Umsida sebagai institusi yang turut mendorong inovasi berbasis teknologi di sektor kesehatan.
Baca Juga: Digitalisasi Rekam Medis Elektronik (RME) : Inovasi Menuju Layanan Kesehatan yang Lebih Efektif
Riset ini membuktikan bahwa penerapan logistic regression dalam model prediksi hipertensi dapat membantu mengidentifikasi faktor risiko utama seperti usia lanjut dan jenis kelamin. Dengan akurasi tinggi dan pengolahan data yang cepat, pendekatan ini mampu mendukung sistem pelayanan kesehatan menjadi lebih responsif dan terukur.
Fikes Umsida terus berkomitmen menghadirkan riset-riset aplikatif dan berdampak langsung bagi masyarakat. Dengan menggandeng teknologi seperti data mining, dunia kesehatan kini memiliki peluang besar untuk melangkah lebih maju dalam pencegahan penyakit tidak menular seperti hipertensi.
Sumber: Alliza Sapto Novari Prediksi Faktor yang Mempengaruhi Hipertensi dengan Metode Data Mining untuk meningkatkan Pelayanan Kesehatan di UPT Puskesmas Ngoro
Penulis: Novia